
Textured 3D Model Reconstruction from Calibrated Images Table of Contents

Table of Contents
Table of Contents...1

Introduction..3
Uses of 3D Model Reconstruction..3
Methods of Model Acquisition..3
Methods of Model Reconstruction ...4

Preparation...7
Background Reading and Research...7
Requirements Analysis..8
Choosing Algorithms...10
System Design...13
Provision for Testing...15
Proof of Feasibility..15
Choice of Development Tools and Hardware...16
Backups and Source Control...18
Analysis of Project...19

Implementation...20
Test Images..20
Stepper Motor Controller..21
Image Capture..22
Background Detection...24
Volume Construction...25
Meshing...27
Polygon Reduction..28
Texturing...29
Model Saving...32
Java Viewer ..32

Evaluation..34
Testing...34
Testing on Different Models..36
Comparing Performance..39
Results...39
Goals Achieved...40
Residual Bugs..40

Conclusions..42
Summary of Findings..42
Hindsight...42
Further Work...42

Bibliography...44

Appendices...46

Page 1 of 54

Textured 3D Model Reconstruction from Calibrated Images Table of Contents

JMOD Model File Format...46
POV-Ray Pawns..48

Project Proposal...50

Page 2 of 54

Textured 3D Model Reconstruction from Calibrated Images Introduction

Introduction
This chapter discusses potential uses for 3D model reconstruction, and

then goes on to cover various methods that can be used to create 3D models of
real-life objects.

Uses of 3D Model Reconstruction
In the past 20 years, vast increases in the processing power of

computers has enabled creation of interactive 3D graphics. While computers are
now able to create very lifelike and spectacular images, they are still only as good
as the information they are given to work from. Every object that is rendered must
be described for the computer in terms of primitive objects that can be drawn. In
most cases this information will be in the form of a list of polygons.

Objects may now be described and edited relatively easily within the
confines of the computer using CAD and other software. Almost all modern
products are designed inside a computer before ever being produced in the real
world. From the point of view of advertising this is very useful, as very lifelike
images of the product to be marketed may be produced.

However, there are still many occasions when having artists describe
the object by computer is not the best method. Perhaps an accurate likeness of an
already existing object is required, or the object could be produced far more
quickly by a sculptor using clay. Very good examples of this are seen in the film
industry, where indistinguishable virtual scenery or stunt doubles of actors must
be created. In addition, a lot of entirely computer generated characters are
produced by sculptors beforehand.

As technology has progressed, computers have been able to produce
three-dimensional graphics that are real-time and interactive. The same need for
real-life 3D models has been found in the interactive sides of computing, such as
computer games and the Internet. These new areas have introduced slightly
different demands of the technology. They may require hundreds of 3D models,
but not put the same high demands on quality and accuracy. They also probably
require a lower cost solution.

That solution is the aim of this project. Most professional solutions to
the problem of model reconstruction have so far focused on high-cost, low volume
markets. The process of creating a 3D model from a real-life object is usually
divided into two steps - acquisition and reconstruction.

Methods of Model Acquisition
There are many ways to capture a three-dimensional model of a real-

world object. Perhaps one of the simplest of these is a pointer on a jointed arm
containing position sensors. The operator then places the end of the pointer on
many different parts of the object, and would gradually build up a set of points on
the model in the computer. These can then be joined up to create a mesh of
polygons which represent the outside of the object.

Page 3 of 54

Textured 3D Model Reconstruction from Calibrated Images Introduction

This can also be implemented automatically in a very crude manner –
the object is placed on a turntable, and a motorized pointer is driven outwards
until it hits the object, where its displacement is measured.

Faster and less intrusive methods of reconstruction tend to use lasers.
By shining a laser beam, and then looking for the dot with a linear sensor,
measurements can be taken quickly and accurately without disturbing the object.
A similar idea is used by some scanners, in which a pattern of light is projected
onto the object, and information read back via a digital camera (changes in
displacement or focus of the pattern are used to determine depth).

A variation on this technique involves no patterns, but instead uses a
camera with a very narrow depth of field (that can be refocused to different
depths). Image processing techniques can determine how far away each pixel of
the image is by finding the depth at which that area of image appears most sharp.

Another method of model acquisition is used in a professional product
called the Z-Cam. This uses a grey scale CCD with an extremely fast shutter and a
defocused infra-red laser. The shutter is closed, and the laser fires a burst of light.
At the time the reflected light is expected back the shutter opens, and then closes
again after most light has returned. The brightness value in the CCD will then be
proportional to the distance away of the object (the proportion of the laser pulse
that returned). Many other methods of model acquisition exist, such as laser range
finding, ultrasonics, and radar.

Methods of Model Reconstruction
Using the information gained from the above methods to create a 3D

model is quite easy in most cases. Most of the methods produce a series of three-
dimensional points, whose exact connection is known so they may be connected
by triangles relatively easily.

It is however possible to obtain three-dimensional models using just a
series of two-dimensional images from a normal camera. In this case
reconstruction becomes more complex. One (quite popular and simple) method
worth mentioning involves vast amounts of manual intervention (PhotoModeler –
[1]). Several images are taken, and key points are marked and identified by a
human.

The software then takes this information and calculates the
coordinates of these points in 3D. Ideally the whole process could be automated,
but the brain is very good at pattern recognition. In fact, using a human to pick out
key points often results in a more efficient and accurate mesh, purely because the
points chosen will be at rapid changes of surface shape rather than just where the
colour changes suddenly (as most recognition algorithms would tend to do).

Another problem to be considered is that of very small features on an
object. Obviously an object can be scanned at extremely high resolutions, but this
is impractical for most uses (apart from high budget, low volume industries such
as films and engineering). A common method of adding detail to a low resolution
mesh is to use a texture. This is an image that is effectively painted on to the

Page 4 of 54

Textured 3D Model Reconstruction from Calibrated Images Introduction

polygons that make up the model, and for features that do not protrude far from
the model it works very well.

To gain this information, several images of the object from different
viewpoints are required (or an extremely high-resolution colour scan, which is
probably not practical). Therefore from the point of view of cost it makes sense to
find a solution to the problem that could use the same images for both model
reconstruction and texturing.

There has been a sizeable amount of research
into techniques for reconstructing models from
cameras; however the work that first caught my eye
and gave me the idea for the project was that done
by two masters students at MIT (Jim Paris and
Mariano Alvira) for use in a hardware practical
class. This didn't actually use a camera at all, but
involved 16 light sensors arranged in a line with
opposing lights and a rotating turntable.

The apparatus would detect if a parallel beam
of light could pass through the test objects in each one of 16 positions, and for
different angles of the turntable. Using this 2D tomography technique, a very low
resolution 2 dimensional slice of objects on the turntable was produced using only
a 1 dimensional sensor and a stepper motor on the turntable.

The algorithm used for this is based on the Radon [2] transform. This
is the same algorithm as used for X-Ray tomography, which is often used to
reconstruct 3D models of structures inside objects that cannot be opened or seen
through (such as luggage, or items of archaeological importance).

A simple explanation of the Radon transform is that it sums all the
input data in such a way that every point in the 2D result is the sum of every point
in each 1D projection that can 'see' that point. This involves summing the 2D
matrices obtained by extruding each 1D projection into a 2D matrix, and rotating
it by the angle from which it was taken. The Radon transform will be covered in
more detail later.

MIT's approach differs slightly from the Radon transform in that light
and opaque objects are used. Light either passes through the gap between objects
or doesn't, and this makes the algorithm far more intuitive (instead of summing, a
boolean AND is performed). It does introduce some interesting problems, such as

Page 5 of 54

MIT's 2D Tomography Unit

Result produced by MIT's
tomography unit

Textured 3D Model Reconstruction from Calibrated Images Introduction

the way that a hollow object (such as that shown in the image above) can never be
known to be hollow, and so will appear solid (as shown by the result of the scan).
This is not the only problem - in fact all concave surfaces suffer in a similar way.

MIT's 2D Tomography apparatus could easily be extended to produce
a three-dimensional model, either by using a two-dimensional sensor, or by
moving the object in an extra dimension. The obvious way to create a two-
dimensional sensor is to use a digital camera, which is not only two dimensional,
but very high resolution.

The algorithm used in the 2D tomography apparatus relies on the
sensors detecting parallel beams of light, which causes a bit of a problem. It would
require a series of lenses in addition to the Camera to make it detect only parallel
beams of light. However, by changing the algorithm slightly, the sensor can
simply be a camera, viewing the object with perspective. There is also no need to
detect light passing through the object – colour matching could detect the
difference between the colour of the object and a uniform coloured background –
effectively detecting the object's silhouette. This allows for a very low cost
solution, with just a turntable needed. In the lowest cost of cases, a minute-long
video of an object rotated by second hand of a clock would suffice.

The shape of the object can be reconstructed from the silhouettes of
the object from different angles. As has already been mentioned, in order to make
the model more realistic, a texture needs to be added to it. The texture itself can be
created from the same series of images of the object.

This is by no means the only method of creating a model from a series
of two-dimensional images. It is the method that occurred to me after seeing MIT's
tomography apparatus. In the Preparation section I will describe other methods
that have been used, and their good and bad points.

Page 6 of 54

Textured 3D Model Reconstruction from Calibrated Images Preparation

Preparation
Background Reading and Research

To start with, it seemed a good idea to research other methods of
model reconstruction to see if any of these would be more useful than the method
described previously. Computer vision is an extremely wide area, so I focused my
research on retrieving information from calibrated images. Retrieving information
from uncalibrated images (where the camera field of view, orientation and
position is not known) is often a far more difficult problem, and is probably not
advisable to undertake for a dissertation project.

Model retrieval from calibrated images has been explored quite
deeply, mostly as research, and at least once as a commercial product. One of
these products was a system that was produced and sold by Olympus, called
ScanTop. It retailed for $7000, and contained just a piece of software and a
computer-controlled rotating turntable. The user had to provide their own camera,
and this would be used to take several pictures of the object from different angles
against a coloured background. From the advertising literature that I could find
[3], the ScanTop used an almost identical method to the one I described in the
introduction.

On the whole though, algorithms have relied on matching features
found in images and triangulating their position (e.g. [4]). At first glance, this
looks like the best solution. It does however introduce the problem of matching
features between all images, and then producing triangles that join these together
in the correct way.

These approaches have both some nice features and drawbacks. They
are able to reproduce concave surfaces well, and automatically produce vertices
that might be a good starting point for triangulation. The main problem is that they
rely on the matching of features in images. A large amount of modern man-made
objects are extremely smooth, and lack features that could be easily found.
Consider also repeating patterns such as the buttons on a computer keyboard or
telephone keypad. The edges of the keys look exactly the same, and could very
easily confuse a simple algorithm that worked without good knowledge of the rest
of the scene.

Another approach taken [5] is a more brute-force approach to model
reconstruction. It considers all points in a volume where the object in question
would be. For each of these it projects out to where it would be seen in the images
taken from each angle. If the colour of the point is similar in around half of the
images, then it can be deduced that what was being viewed was a surface (viewed
from all around the 180 degrees it is visible). This sounds like it would be very
robust, but some further scrutiny shows some serious shortcomings. This is an
algorithm that produces Voxels [6] not polygons, which are hard to produce
triangular models from. It also suffers badly from large areas of similar colour on
an object.

Considering the explanation of the last approach, the method based on
MIT's idea can be described in a much more intuitive manner: For each point in a
volume, project onto each available image where it would appear if it existed. If in

Page 7 of 54

Textured 3D Model Reconstruction from Calibrated Images Preparation

any image you can see the background where the point should be, then it
obviously doesn't exist. When performed over an entire volume, each point is then
known to be either inside or outside the model. This is a perfect set of data for
other algorithms to work on.

Requirements Analysis
The aim of this project is to produce a low-cost method of model

reconstruction that can be used for interactive applications. For the majority of
these applications, high accuracy will not be required. Since this is a low cost
solution it should be capable of running on a standard PC, and should use very
little external hardware.

Because of this, I decided to set the following objectives for this
project:
� Should run on a normal PC
� Should not require the PC to be modified in any way to interface hardware
� Will automatically take pictures of an object from known angles
� Will complete calculations in a useful amount of time. e.g. less than an hour
� The model produced should be an obvious likeness to the real-life model

Another question that needs answering is how high do we expect the
resolution of the model to be? Since this is for interactive applications, the
accuracy does not need to be high. Using the method of model construction given,
very little fine surface detail will be produced anyway, so a bare minimum of
triangles will be needed.

Page 8 of 54

Textured 3D Model Reconstruction from Calibrated Images Preparation

The diagram above shows the same object, but made from different
amounts of triangles. While the low resolution model obviously contains very
little detail, there are a few tricks that can be used to make it look almost as good
as the high resolution one. The first one of these is not to calculate light for
triangles, but instead to calculate light for each vertex, and use the triangles to
blend between the different colour values (Gouraud Shading - [7]). The second is
to apply a texture onto the triangles to introduce more detail.

When these two approaches are combined, the result is much better,
and it is obvious that a large amount of triangles should not be needed. See the
diagram below for an example. The amount of triangles needed varies drastically
with the complexity of the object. However I only intend to scan moderately
complex objects, and I believe 2000 triangles is more than enough to adequately
describe an object when textures are applied. Any more than this and it would be
impractical to download the object (and its texture) quickly over a slow Internet
connection.

Page 9 of 54

Different Resolution Models from Stan Melax' Polygon Reduction Demo

Textured 3D Model Reconstruction from Calibrated Images Preparation

Choosing Algorithms
Reconstruction

After considering the other methods of model reconstruction
mentioned, I decided that the original idea (using a modified Radon transform)
was still the easiest and most robust to implement. In its normal form, the Radon
transform converts representations of data from matrices representing pixels in an
image, to matrices representing lines that make up the image.

Performing the transform on an image will yield another image where
the brightness of each point specifies how much of a certain type (angle/offset) of
line there is in the image. The axes usually represent the angle of the line (theta)
and the smallest distance between it at the origin of the coordinate system.

The Radon transform itself is very intuitive. For every point in the
transform, the value may be calculated by adding all the points in the source image
along the line it represents. The formula below shows this :

g �� , s��� f �x , y � .�� x sin�� y cos��s�dx dy

δ is 1 when its argument is 0, and 0 elsewhere
f(x,y) if the original image

x = x coordinate
y = y coordinate

g(Φ,s) is the transformed image.
Φ = angle (in radians)
s = offset from the origin

The line integrated over is usually to infinity, as the equation suggests.
However by defining the image as being 0 everywhere except where data is
defined, we have to sum only pixels in the image.

Page 10 of 54

Different Ways of Rendering the Same Model (654 triangles)

Textured 3D Model Reconstruction from Calibrated Images Preparation

Above is a radon transform of a hand-drawn line. It is obvious that
even though the line is not perfect, at one point in particular the radon transform
produces a high value. This represents the line's angle and distance from the
origin.

Above is the Radon Transform of a Circle. Imagine the circle placed
off-centre on a turntable, and then looking at its projection as it rotates. The result
of the Radon transform looks very similar to this (1D projections along the X axis,
rotation along Y).

This turns out to be very useful, because in these circumstances the
inverse Radon transform allows the original object to be more-or-less
reconstructed. This is the same idea used in X-Ray tomography.

Page 11 of 54

The original image (left), and its Radon Transform (right)

A Circle, and its Radon Transform

Textured 3D Model Reconstruction from Calibrated Images Preparation

To perform the inverse transform, you must integrate along a sine
wave instead of a line. A far more intuitive way of thinking about the Radon
transform is to imagine taking the 1D projections of the 2D object, and extrude
them over a 2D array. Then, this array is rotated by the amount the object was
rotated, and added into an accumulation array (which is originally zero). The end
result is the same.

This transform can easily be extended to 3D, by extruding 2D
projections. It turns out that if the extrusion is replaced with a perspective
calculation, a simple parallel projection is not needed, and an image as taken from
a camera can be used instead.

In the series of images above, the original image has been blurred
slightly. If this was created from silhouettes, the Image would be either black or
white, however none of the concave structures would be reproduced.

The Images shown in this section were produced from a interactive
Java applet that I made to test the Radon transform. It is available on my website,
the address of which is at the end of this document.

Background Detection
For the previously mentioned algorithm, the background needs to be

reliably detected from the foreground of each image. I decided that the best way to
do this was to place a solid coloured background behind the object when images
were taken of it.

The output of the background detection needs to be a single-channel
image in which the value of each pixel represents whether that pixel was
foreground (object) or background. I decided not to limit this to a boolean value
and to instead use a graduation of values to represent pixels that the algorithm
wasn't certain about.

I didn't research into algorithms for background detection, because it
seemed that it could be done reliably simply by comparing the colour within some
tolerance. This matching does however need to be done in HSB colour space
because the colour should be matched far more tightly than the brightness
(lighting will almost certainly be different in different areas of the background).

Page 12 of 54

An Image, its Radon transform, and finally the result of an Inverse Radon transform

Textured 3D Model Reconstruction from Calibrated Images Preparation

Polygonisation
In order to convert the data in the volume into polygons (which would

be easier to render and to put textures on) there are several different methods
available. However, the algorithm would be working from a three-dimensional
volume full of points spaced at regular intervals. The two main algorithms I could
find that were of use were one involving Tetrahedrons [8] (which doesn't appear to
have a name), and Marching Cubes [9][10]. Marching cubes is widely used in
many areas, and I decided to use that because of its relative simplicity to
implement.

Marching Cubes works by dividing the volume into a series of small
cubes, and draws a polygon inside each cube (if it is needed) to approximate
where the surface should lie (where the value in the volume is some constant). The
algorithm itself was covered in the Advanced Graphics course of CST Part II [11].

Polygon Reduction
Performing the Marching Cubes algorithm on the volume could

produce a very large amount of polygons, and because of the intended use for the
models (interactive rendering) it makes sense to reduce the number of polygons
used in areas where they are not needed (e.g. flat parts of object). This is not vital
though, so I decided this would be left as an exercise if I got time.

Quick research into this area turned up many methods of polygon
reduction, however the one that appeared most simple, and visually to give the
best results, was from an article in GDMag written by Stan Melax [12].

Texturing
Finally, a texture needs to be added to the polygons. I decided that this

could be done by projecting each image from the camera onto the model after the
shape had already been calculated. This would use texture mapped polygon
drawing with Z-Buffers for the bulk of calculation.

Texture Mapping and Z-Buffers are discussed in the CST Part IB
course titled 'Computer Graphics and Image Processing' [13] and the other courses
it refers to.

System Design
The whole system now consists of a chain of algorithms:

Page 13 of 54

Textured 3D Model Reconstruction from Calibrated Images Preparation

Background Detection is an algorithm that produces grey-scale images as output.
Black means background, and white means the object. Anything inbetween will be
defined as not being known exactly. The algorithm works by converting the
images into the HSB colour space, and finding the vector distance between each
pixel and the colour of the background.
Volume Construction takes the images from background detection and projects
them into a 3D volume. Any element in the volume is deemed to be present if any
one of the images was background at that point (modified Radon transform).
Meshing uses the Marching Cubes algorithm to create a set of triangles that make
up the object. These are placed in a Mesh object that contains the triangles and
vertices.
Polygon Reduction uses Stan Melax's polygon reduction algorithm [12] to reduce
the amount of polygons in the model.
Texturing first assigns each triangle an area of a large texture, and then makes an
average of the colour of every pixel in the texture according to all the input images
where that pixel is visible (e.g. Not occluded by the other side of the object).
Model Saving is not shown in the diagram, but saves the texture and model
information to a file that will be read by the model viewer.

Page 14 of 54

Volume
View

Model

Files on
Disk

Background Detection Volume Generation,
Meshing

Poly Reduction,
Saving

Texture

Texture Generation,
Saving

Textured 3D Model Reconstruction from Calibrated Images Preparation

In order to make development easier, and to keep code tidy, I decided
to implement the code in an object-oriented language. Data structures such as
images, volumes, meshes and textures would all be represented by objects, with
the algorithms that operate principally on them being implemented in methods in
those objects. The diagram to the left shows how I intend the objects to link
together.

Provision for Testing
I decided to start by implementing dummy objects containing blank

methods, and then implementing the functions in the order in which data flows
from the start (with the exception of Polygon Reduction, which is an extension).
This increases the functionality of the project over time, while allowing me to test
each part using as input the information I tested from the last finished block.

This is very much like the 'Bottom Up' software design philosophy, in
that the parts of software needed for the rest to function are implemented first.

The program itself would contain a simple 3D preview window to
allow objects to be debugged without introducing extra places for error (file
load/save). Below is a table of the type of test output expected from each stage.

Background Detection Grey-scale images showing what is considered
background and what isn't.

Volume Construction A 3D model rendered to the screen volumetrically –
placing points everywhere the volume is deemed to
be solid.

Meshing A 3D wireframe model, followed by solid, and
finally smooth-shaded (when normals have been
calculated)

Polygon Reduction A smooth-shaded 3D model
Texturing A textured 3D model, as well as the texture output

to a file.
Model Saving The texture saved to a file, as well as the file

produced itself. This should be viewable by the
viewer – no other test information is feasible.

I planned to use POV-Ray to create a series of test images. These
would have a known, solid background colour, and a known field of view. It is
then much easier to check that my algorithms are working correctly.

Proof of Feasibility
As a brief proof that the idea would be successful, I decided to make a

simple version of the Volume Construction algorithm. I did this by creating a
program in Pascal - mainly because it was very quick to prototype in, and had
good file I/O.

Page 15 of 54

Textured 3D Model Reconstruction from Calibrated Images Preparation

The program rendered a model consisting of 4 cubes of different
heights from different angles. It then used these images in the way that has been
mentioned to create a volume of points, of which slices were rendered. This
allowed me to test if the method would work satisfactorily, and also to gauge how
much processing power would be required for the algorithm.

Choice of Development Tools and Hardware
As well as creating the 3D model, the project should also provide a

way of viewing it on-line. The obvious choice for this is Java, which will allow
the object to be viewed from a web browser on any Java-enabled platform.

ActiveX controls are a possibility for this, and could be written in a
variety of languages (C/C++/VB/Delphi), however it is Windows-only and so not
particularly suitable.

For the project to work, very few extra resources are required. I
needed a method of retrieving images from different angles, and a camera to
capture the images.

Changing Angles
In the original Project Proposal, I suggested the use of a 3-jointed

robot arm to capture images and keep lighting constant. I built it, but during this
stage I realised that keeping a constant colour background would prove very
difficult, and the original reason for it wasn't a problem after all.

The original reason was that lighting might be best kept constant if
feature matching were to be done (but I have since decided to use the silhouette
method). In texturing, the texture will be averaged over all views, and lighting will
not be a problem in that phase either.

I decided the added complexity of positioning the arm wouldn't gain
me any advantage, and instead opted for the fall-back idea of using a turntable.

Page 16 of 54

The Robot Arm created for this project

Textured 3D Model Reconstruction from Calibrated Images Preparation

The turntable (shown below) was made from perspex and contained an old hard
disk stepper motor that required 200 steps per revolution. I still decided to go with
the original idea of using the PIC microcontroller controlled stepper driver, which
I would have to program.

There are C compilers available for PIC microcontrollers, but due to
the simple nature of the program I opted to write it in assembler. PIC assembler
consists of only 32 instructions, and so is relatively easy to write and debug.

The PIC microcontroller would have to accept commands via an
RS232 port and output the correct series of signals to turn the stepper motor. In
case of the failure of this, I found a relay control box that worked from the PC
printer port's data lines. Controlling the printer port data lines directly from
Windows is non-trivial, and so this would be a fall-back measure using an old PC
running DOS.

Camera
Before starting the project I made sure I had a camera capable of

taking pictures on demand. The one I obtained was an Olympus C2020Z, which
contained a serial port interface. Some free third-party software (PhotoPC [14])
can be used to control the camera. In case of failure, I also had access to another
Olympus camera with the same interface.

Programming Language
The programming language that the project should be written in and

any extra libraries that might be needed have to be considered. Java would be the
obvious option here, but my experience has shown that it could be far too tedious
and slow to be used for image processing.

Java makes access to raw image data quite hard, to the extent that its
Graphics class doesn't contain a special getPixel or drawPixel method, and
requires quite a large amount of code to retrieve image data. This would make
code far more obscure than it needed to be, and the majority of my time would be

Page 17 of 54

The Turntable to be used

Textured 3D Model Reconstruction from Calibrated Images Preparation

spent wrestling with the various APIs.
For this reason, I have opted to use C++. There are a vast array of

libraries available to use. For this project, I require both to be able to read images
that the digital camera has output (in JPEG format), and to be able to output the
the result quickly and easily in 3D.

To load images, there are several options. The three of these I found
most appealing were:
� The JPEG Image loading code
� ImageMagick Image Library
� DevIL Image Library

The JPEG code will load and save JPEG files quite happily, however
it doesn't provide any other utility functions that I might need (such as flipping
images, resizing, blurring, adjusting contrast). ImageMagick and DevIL are very
similar in this - both allow images to be loaded and saved in many formats, and
provide many manipulation functions. However DevIL appears to be alone in the
fact that it supports integration with DirectX and OpenGL, which would be very
useful from the point of view of displaying debug output. In addition DevIL
allows the binary pixel data to be accessed extremely easily, so it seemed the
obvious choice for this application.

For simple debugging I wanted an easy way of displaying 3D graphics.
The only 2 viable options here were DirectX and OpenGL, and I quickly
discounted DirectX because it wasn't multi-platform and took an excessive
amount of work to initialise. The OpenGL GLUT library allows OpenGL to be
initialised on any platform in just a few lines of code, and rendering in OpenGL is
almost as simple as specifying the coordinates of each triangle.

Using these two libraries which are both very low level should reduce
the amount of effort required to interface to the bare minimum, and allow more
time to work on the algorithms.

The viewer will be written in Java. Most 3D toolkits for Java (Java3D,
JavaGL) use native enhancements to make them interface with display hardware,
and so need a separate installer.

These aren't really feasible for a website since a user is unlikely to
want to download anything extra to view objects. While a few Java software
renderers exist (Jazz3D), writing a simple Z-Buffered texture mapper is relatively
easy and so I opted to write the entire applet myself.

Backups and Source Control
In order to ensure that I lost the minimum of information in the case of

a hardware failure I decided to copy all files to another computer at the end of
each day I worked on the project. Every week I would then write the files from
each day off to CD-R to ensure I had a proper backup of everything that I had
done.

Page 18 of 54

Textured 3D Model Reconstruction from Calibrated Images Preparation

Given the way I decided to design this project, it only consists of 5 or
6 source files (plus headers). I came to the conclusion that source control systems
such as CVS would impose too much overhead because:
� There were very few source files
� From the backup I had a full copy of each day's work anyway
� Due to the way the project was being implemented (Bottom-Up), only one

source file would require major changes each day.

Analysis of Project
The parts of the project I foresee having problems with are the

retrieval of images, polygon reduction and texturing. I have left extra time for
these in the schedule. Background detection, Volume Construction and the Java
viewer should not pose any serious problems.

Page 19 of 54

Textured 3D Model Reconstruction from Calibrated Images Implementation

Implementation
I have chosen to describe the aspects of the project's implementation

in the order in which data flows between them, to cut down on references between
sections. Then order they were implemented in was exactly as described in the
original Project Proposal.

Test Images
The first step of development was to produce a series of test images.

This was done with POV-Ray [15], using the chessboard and pawns example.

The chess board was removed, and the pawns moved closer together.
The camera position was set to a combination of sine and cosine, which rotated it
around the pawns to produce a series of test images. I chose a white background,
because this seemed easiest to recreate in real life (using spotlights on white
paper). After looking at the images produced it was however obvious that specular
reflections on the objects were appearing white too.

With careful lighting in a real-world situation (with non-reflective
objects), it is unlikely this would ever happen, but due to the nature of the
intended volume construction algorithm (where data is effectively boolean
'AND'ed together) any part of object that is mistaken for background will be
removed from the computer's model, making a hole in it.

Page 20 of 54

Pawns.pov - an example POV-Ray file by Douglas Otwell

Textured 3D Model Reconstruction from Calibrated Images Implementation

I re-rendered the test model on a
red background, with the intention of using a
bright red background for real-life models
too. The choice of colour could in theory be
anything that did not occur on the object
being scanned. However, I had some red
velvet (velvet is very good at giving a
constant colour) so it seemed sensible to use a
similar colour for the background o the test
images.

Stepper Motor Controller
To program the Microchip PIC microcontroller

on the stepper motor control board I used the Microchip
In-circuit debugger. This allows the PIC's flash memory
to be programmed while it is still in the controller board,
and also provides good debugging functions such as
breakpoints and watching of registers.

The controller itself needs only to perform
very simple functions based on input it receives from an
RS232 port (This the only realistic communications
method provided by the controller board). It must move
the stepper motor a certain number of steps in a certain
direction by changing the state of 4 output pins over time.
Since timing is not critical, I decided not to use interrupts
and the PIC's built-in timer, and to instead opted for a
round-robin. Each time around the loop the UART was

checked for data, and then the state of the output pins was changed if enough time
had passed.

As the diagram above shows, there are 5 pins on the stepper motor.
One of these must be connected to either ground or VCC. I chose VCC because

Page 21 of 54

Round-Robin in PIC

Service
Stepper A

Service
Stepper B

Service
Stepper C

Check
UART

Wiring of Stepper Motor

Textured 3D Model Reconstruction from Calibrated Images Implementation

the stepper motor driver used is more efficient at pulling its outputs to ground. In
order to rotate the stepper motor, the lines must be pulled low in order:

Clockwise RED, GREEN, YELLOW, BLUE, RED, GREEN, ...
Anti-Clockwise RED, BLUE, YELLOW, GREEN, RED, BLUE, ...

The protocol was designed to be as simple as possible for the PIC. The
data rate chosen was 19200 baud (very little data needed to be transmitted), with
no parity and one stop bit. The last 4 characters are stored in a buffer, and each
new character received is checked to see if it is a command.

The length of the round robin loop was arranged so that the time taken
between checks of the UART was far less than the time taken for a character to be
received (at 19200 baud, less than 0.5ms per character), so that overflows could be
avoided.

If the last character is A,B or C (referring to the 3 stepper motor
drivers) the PIC looks back in the buffer for a direction (either + or – character)
and a 2 digit hexadecimal number specifying the amount to move. Characters in
hexadecimal numbers are lower-case to avoid confusion with commands.

I chose this reversed method of sending commands (you would expect
the command character to come first) to avoid having to implement a state
machine. Using this method, only a simple check needs to be done each time
around the round robin.

There is also no notification that a stepper has finished moving. I
intend the controller to only move the turntable by a few steps (4 or 8) and
movement will be finished by the time the digital camera has received the request
to take a picture. This limits the use of the controller, but for this project there is
no point in adding any extra complexity that will not be used.
Examples of commands are :
01+A Move stepper A forward by 1 step
ff-B Move stepper B backwards by 255 steps
7f+A7f+B7f+C Move all steppers forward by 127 steps
D Disable all steppers (save on power)
E Enable all steppers

Image Capture
No problems were encountered while programming the PIC, and the

turntable was tested using TeraTerm. The digital camera was also controllable via
an RS232 port, and the free command-line software (PhotoPC [14]) was used for
this. It takes roughly a second to initialise the digital camera – plenty of time for
the turntable to stop moving. It seemed sensible to do the capture of images with a
simple batch file. Copying data to 'COM1:' saves on the unnecessary complexity
of the Java Serial port APIs, and the command-line nature of the PhotoPC
software was perfectly suited to this. Below is a small section of the batch file

Page 22 of 54

Textured 3D Model Reconstruction from Calibrated Images Implementation

used:
mode COM2 BAUD=19200 DATA=8 STOP=1 PARITY=n
copy rleft.txt COM2:
photopc -l COM1: snapshot
copy rleft.txt COM2:
photopc -l COM1: snapshot
copy rleft.txt COM2:
photopc -l COM1: snapshot
...
...

The file rleft.txt contained the command needed to rotate the stepper
motor. In the case of this file, 25 rotations were made, and the contents of rleft.txt
was:

08+A

After some investigation into minor inaccuracies in the sequence of
images obtained I noticed that the base of the turntable was moving very slightly
relative to the floor over the rotation of the model. This meant that over the course
of what should have been a 360° rotation, the top of the table had rotated by only
350°.

The solution to this was simply to mount the turntable and camera on
the same piece of wood. However, at the same time I decided it would be
worthwhile to find a more universal method of image capture. PhotoPC supports
around 10 cameras, but all of these are out of production now.

The solution I found was to use the Java Media Framework to capture
images from any video input source (specifically a web cam). This has the added
benefit that since the camera now used USB, the whole system was easily usable
on a laptop, which usually only contains a single RS232 port. This made setting
the apparatus up much easier.

I made a small Java program to capture Images, and also to control the
turntable by opening and writing to the file 'COM1:'. Again, the Java

Page 23 of 54

The web cam and turntable mounted on a wooden platform

Textured 3D Model Reconstruction from Calibrated Images Implementation

Communications API was overkill for the very simple serial control that was
needed.

For the coloured background, I was able to use dark red velvet. This
has the nice property of having very little visible texture, and also very low
reflectance, so the camera sees a very uniform colour. The images gained from
this look very easy for software to distinguish background and foreground from.

Background Detection
Using the red velvet, the

background of the image appears to be
an almost constant colour (apart from
changes in lighting). Detecting the
background in this kind of image
should prove a simple case of colour
matching, assuming there is no trace
of a similar colour in the model. The
algorithm should produce an image as
output where a value between 0 and 1
signifies how likely the pixel is to be
background (0) or object (1).

The first part of the colour matching process is to convert the entire
image from the RGB colour space to HSB colour space. This allows the matching
algorithm to pay more attention to the hue of the background than the brightness,
since changes in lighting throughout the picture are bound to occur.

The conversion to HSB colour space is relatively simple. Brightness
and saturation are calculated from the formulae below.

HSBB�MAX �RGBR , RGBG , RGBB�

HSBS�
�HSBB�MIN �RGBR , RGBG , RGBB��

HSBB

HSBH,S,B are the Hue, Saturation and Brightness
RGBR,G,B are the Red, Green and Blue values

The hue depends entirely on the colour. The RGB value is normalized,
and then the correct value for hue is chosen depending on the relative amounts of
the two non-zero colours left :

After the change to HSB colour space, a scaled vector distance is

Page 24 of 54

Textured 3D Model Reconstruction from Calibrated Images Implementation

calculated for each pixel between the pixel's HSB value and the intended HSB
value. Scaling occurs in each dimension to allow for different sensitivity for hue
and brightness.

The formula for this looks like:

D�	�H scale
�H match�H img��2�
�S scale
�S match�Simg��2�
�Bscale
�Bmatch�Bimg��2

� offs

Hscale, Sscale and Bscale are values that determine how accurately H,S and B are to
be matched
Hmatch, Smatch and Bmatch are the ideal values that the background should be
Himg, Simg and Bimg are the HSB values of the image at that pixel
offs is the value that determines how much we expect the background to vary in
colour

This is then clipped to the range [0,1], and saved into another image
which is used for the volume construction stage.

Volume Construction
The information retrieved from background detection must then be

used to produce the Volume of Scalars which will eventually produce the
Polygon-based model. This section of the project depends very heavily on how the
apparatus is set up.

To keep the calculations simple, the apparatus must be set up as
follows:

Page 25 of 54

Camera
Object

Centre of Camera's View

Turntable

Textured 3D Model Reconstruction from Calibrated Images Implementation

The camera must be pointing horizontally, with the axis of rotation of
the turntable positioned in the middle of its field of view, pointing parallel to the y
axis of the sensor. The relative height of the camera to the turntable will not make
any difference except to the position of the scanned object.

From a theoretical point of view, first a volume must be filled with the
background information, where the X and Y from the source image map directly
onto the volume, and every point on the Z axis is the same:

A � x , y , z
�B � x , y

A is the extruded Volume, B is the Background Image generated in the last
section

Then, the volume must have a perspective transform applied:

C � x , y , z
�A� x
z�d , y

z�d , z

C is the Volume with perspective
And finally this must be rotated around the y axis by the angle the

image was taken from. Note that the y axis can be left alone – this is a
consequence of the camera being horizontal.

D � x , y , z
�C �� x cos t ��� z sin t � , y ,� z cos t ��� x sin t �

D is the fully transformed Volume

An Accumulation Volume Acc must be created. This is originally
initialised to all '1'. We know the volume D now contains information on whether
each entry is deemed to be part of the background or foreground. We could simply
perform a boolean AND between Acc and D.

However the Volume D doesn't contain boolean values, but instead
values between 0 and 1. To merge the two volumes it makes sense to use the MIN
operator, to find the minimum value out of the two volumes:

Acc � x , y , z
�min�Acc � x , y , z
 , D � x , y , z
�
In the actual C++ code, the above transforms were done in one step

without the intermediate volumes, by just transforming coordinates. This not only
increases readability and speed, but also accuracy (performing the steps separately
introduces more rounding errors than are needed).

Page 26 of 54

Field of View
Ø

D

Textured 3D Model Reconstruction from Calibrated Images Implementation

Meshing
Meshing used the Marching Cubes algorithm. In order to implement

this, I used the description in a paper called 'Polygonising a Scalar Field' [9]. The
algorithm would add triangles by attempting to find the vertices that made them
up, otherwise it would add new vertices to the model and use those instead. This
meant that some connection information could be gained as the model was created
and a lower computational cost.

The C++ object that contained the model was implemented using
doubly-linked lists for triangles and vertices. This is of very little importance at
the moment, but had very little extra overhead, and allows fast removal and
addition of data when Polygon removal is to be implemented.

There were several reasons for this. The first was that connection
information allows normals of vertices to be calculated, which helps to produce a
far better looking, lit model (Gouraud Shading). This information also allows the
Polygon Reduction algorithm to detect adjacent triangles more easily, and in
addition reduces the file size of most saved models by removing redundant
vertices. Fewer vertices also means less geometry calculations and so faster
rendering.

The winged-edge data structure could have been used, but this allowed
more information to be stored than was needed, and would have caused more
trouble than necessary when it came to keeping all the information consistent
while performing operations on the mesh.

On test runs with models, meshing took a very large amount of time to
complete because of the searching of the vertices that was needed – a potentially
O(n3) problem where n is the volume size.

However, by adding the most recent vertices at the front of the list, the
spatial locality of the triangles can be exploited. Because marching cubes will

Page 27 of 54

The calculated volume rendered as points

Textured 3D Model Reconstruction from Calibrated Images Implementation

work its way in sequence through a volume, triangles in a 2D slice of the volume
may only be joined to triangles in the previous slice. This then reduces the
complexity of the algorithm to O(n2). Of course in order for this to happen, the
search must stop when all the vertices created in the previous slice have been
tested (and I did not implement this).

To speed this up even more, a 3 entry vertex cache was created to take
advantage of the fact that the marching cubes algorithm often produces adjacent
polygons one after the other (especially in the case where two triangles are created
in one 'cube').

Polygon Reduction
Polygon reduction uses the algorithm described in a GDMag article by

Stan Melax [12]. Actually removing triangles from a mesh is not ideal. Instead, an
edge of a triangle is chosen to be collapsed down to a point. This will result in one
or more triangles being reduced to simple lines, which can then just be removed,
leaving no gap in the model.

Choosing an edge involves keeping information on which triangles are
connected to each vertex, and also which vertices are adjacent. This information
must not be calculated each time a triangle is removed, because it would make the
edge-finding algorithm of O(n2) complexity, and therefore unusable for the
amount of polygons that I would require it to work on. Instead it must be cached,
and only the affected entries updated.

The amount of triangles adjacent to a vertex does not on the whole
depend on the total number of triangles in the mesh. Therefore storing connection

Page 28 of 54

Removing triangles by collapsing an edge

The Triangles produced by
Marching Cubes rendered as a

wireframe

Textured 3D Model Reconstruction from Calibrated Images Implementation

information and updating is as it changes is only O(1) apart from the initial O(n)
construction. This reduces the whole edge-finding algorithm to O(n) complexity.

Using the stored information, the edge which could be collapsed with
the least amount of distortion to the model is found. Determining this properly
would require a large amount of processing, so instead a simple heuristic is used,
based on the length of the edge, and the angles between their normals (shown
below). After the collapse, all adjacent triangles and vertices have their stored data
recalculated.

cost �u ,v ���u�v��max
f �Tu �min

n�Tuv
��1� f.normal�n.normal ��2��

u,v are the two edges
Tu is the set of triangles that contain u
Tuv is the set of triangles that contain both u and v
x.normal is the normal vector associated with the triangle x

I implemented the algorithm quite quickly, but had some difficulty
getting it to work reliably (triangles would be removed, leaving just a hole in the
mesh). In order to debug it I used the 3D preview display, highlighting polygons
that were to be removed to see if they were the correct ones, and whether they had
been reduced correctly. Text debug output was also produced containing the
connection information of each vertex, and I noticed that vertices had an average
connectivity of 2 triangles.

This meant that the model had not been joined correctly, and I traced
the problem back to the add triangle method of the Model object. This was
performing a normal floating point comparison of vectors, which was failing in
most cases due to floating point inaccuracy in the Marching Cubes Algorithm.

The marching cubes algorithm calculates coordinates for each triangle
by interpolating along the edges of cubes. In almost all cases the same calculation
is performed more than once since each edge is shared between 4 cubes. The
calculation is also performed in a different order, and this is almost certainly what
caused the inaccuracies.
 This was quickly resolved by altering the Vector equals function to
check whether Vectors components were within a defined range, instead of the
previous binary comparison.

Texturing
Texturing was one of the most difficult aspects of the project, as I was

able to find very few exact details from research papers. Papers such as [16] and
[5] seem to use some form of texturing, but do not mention this at all. However
they use millions of triangles to describe objects, and could possibly just colour
these instead.

Texturing first requires every triangle in the model to be given unique,

Page 29 of 54

Textured 3D Model Reconstruction from Calibrated Images Implementation

non-overlapping coordinates in a texture, and then for the pixels in this texture to
be calculated from all the different views, using the position of each triangle.

Giving unique coordinates to each triangle is not a hard problem – I
divided the texture into a grid, and then divided each grid square into two right-
angled triangles. Since the triangles are all roughly the same size, it is reasonable
to do this as it is very compact.

A decision had to be made about whether each point on the texture
was made from just the view that was deemed to represent it best, or from an
average of every view that represented it. I came to the conclusion that the latter
option would produce a far more robust algorithm, and would also require less
calculation (finding the most representative would require calculating normals for
every pixel).

The algorithm also has to avoid mixing
textures from parts of the object that overlap. In the
picture on the left, the tail of the cat overlaps itself as
well as the cat's head.

The solution to this problem that I settled on
was to project the computer's model onto the original
view. Then, when the texture for each triangle was to be
drawn, the computer-generated image could be consulted
to find out whether the triangle had been visible in that
view or not.

This approach required a polygon-drawing
algorithm that could render the 3D model from the
source triangles, making sure nearer triangles were

drawn over ones further away. I decided to use a Z-Buffer for this, because it was
simple to implement, and information on how far away which parts of the object
were was also very useful. To draw these triangles, the scan-line approach was
taken, as explained in the CST IB Computer Graphics course [13].

The code for this was also reused for the final part of the algorithm

Page 30 of 54

Layout of triangles in the texture

Parts of an object
occluding others

Textured 3D Model Reconstruction from Calibrated Images Implementation

with a few modifications. This calculated the texture that should be applied to
each triangle for each view. The routine calculated texture coordinates exactly like
a normal texture-mapped triangle draw routine, except that it copied pixels from
the image to the texture.

The texture consisted of 32-bit accumulator planes for R,G and B, as
well as an extra component that contained the number of pixels drawn. This
allowed an average to be kept of all pixels drawn. After the algorithm had
completed, the R,G and B components were divided by the fourth plane to give
the final texture.

Since this part of the project relies heavily on image processing and
rendering, it made sense to test and debug it by being able to view the various data
structures. This was done by saving them to disk as image files. For example to
save the rendered model, the R,G and B colour planes were used to encode the
number of the triangle at that position. This allowed me to inspect the image with
a paint program, and even extract the triangle number via the colour of each pixel.

Page 31 of 54

Computer's model rendered with
triangle number as colour

A section of texture from the scan of the
cat model

Textured 3D Model Reconstruction from Calibrated Images Implementation

Model Saving
One of the aims of this project was to produce a model that could be

used for applications on the Internet – in order for this to be viable, the file that
was produced had to be small. To save the texture, there was really only one
obvious choice – JPEG. There is already good support for this in Java, and it has
very good compression for natural images (because the texture was produced from
a camera in the first place). The lossiness of the format is not much of a problem
as a user is unlikely to notice when the texture is wrapped around an object.

For the model file itself, I decided to save the vertex coordinates,
texture coordinates, and vertices separately. I could have used triangle strips, but it
would have been more difficult.

For an example of a model format I decided to look at Quake 2's MD2
file [17]. The MD2 file had to store many frames of animation in a single small
file. It used no compression, but stored all data in a binary format. Vertex
coordinates were stored using 8 bits per dimension, but with a scale and offset
factor for the entire object.

This seemed perfect for the model format, especially since the
marching cubes grid size was unlikely to be greater than 2563 (mainly because of
processing time), and the model would always be the same size, eliminating the
need for scale and offset information. I used similar ideas from the MD2 file
format by using 16 bit values for texture coordinates, as well as 16 bit values for
the vertex indices in textures. While I could have applied compression to the
object file to make it smaller (vertex indices would never use all 16 bits) I decided
that a file written in this form would probably be small enough.

The exact format of the model file is given in the appendix.
The implementation of this part of the project went fine, however

there is no simple way to test it without the Java viewer. In reality I developed the
code to save models and the Java code to read them at the same time, and this
allowed me to test both parts of the software.

Java Viewer
The Java viewer consists of 4 main classes: The Applet, the Model,

the Graphics class and a Texture Loader:

Applet Class (JModel)
This class acts as glue. On initialisation it reads a parameter from the

web page to determine which model and texture to load, and attempts to read
them. It initialises the Graphics class, and responds to mouse and paint events to
allow the user to interact with the object.

Page 32 of 54

Textured 3D Model Reconstruction from Calibrated Images Implementation

Model Class (Model)
The Model class contains a list of triangles and vertices, as well as the

code to load the model file. It also contains a list of transformed vertex
coordinates – this reduces the calculation required for drawing at the expense of
extra memory usage.

Graphics Class
The Graphics class uses an array of integers, and the

MemoryImageSource class to allow raw data to be written to an Image and
subsequently onto the screen. It used a Z-Buffer based texture mapper that used
exactly the same principle as that used in the Texture Generation above.

Texturing didn't need to be perspective correct because the polygons
are on average only around 16 pixels wide – and perspective problems in a
triangle so small are almost imperceptible. Software renderers often only correct
for perspective every 16 pixels, so there would be no difference in graphics quality
between the two.

To increase speed the texture mapping polygon routine assumes the
texture is 512 pixels high and wide. By performing a boolean AND on the texture
coordinates, range check errors can be avoided without costly conditional jumps.

Texture Loader Class
The Texture loader is a class that implements the ImageConsumer

interface – this is the only, rather long-winded way of retrieving image
information from Java that I was able to find. It contains an integer array which is
updated as the image is loaded – this array is passed to the Graphics class for
texture mapping.

Implementation and Testing of the Java Viewer
I implemented the Applet and Model classes first, drawing the model

first as points to ensure the model file was loaded correctly (which is when the
sign bit problem was found), and then adding a solid polygon renderer, followed
by a modification to display polygons with textures.

I decided not to implement real-time lighting, as the texture already
contained enough lighting information (the average of all lighting over the course
of the rotation) to make the model look realistic.

Page 33 of 54

Textured 3D Model Reconstruction from Calibrated Images Evaluation

Evaluation
Since this project was very dependent on real-world data, there were

only a certain number of things that could be done to evaluate its performance. It
was tested on several real-world objects, and the computer-generated test object of
pawns.

Testing
The obvious evaluation of the system is to attempt to reconstruct a

variety of objects and look at the system's performance with each of them. If was
in possession of an object and an accurate computer model of it then I would be
able to compare the two mathematically and produce hard figures.

Unfortunately I wasn't able to obtain any complex-shaped objects with
models associated with them, so the comparisons I am able to perform are more
limited.

Testing Accuracy
As has been mentioned previously, in order to debug the texture

generation code I saved the rendered model to disk as an image file. By overlaying
this model onto the original image I am able to see easily how close a match it is
to the original.

Above left is this image overlaid onto the original. It is far smaller
than the original, and is missing one ear. One thing responsible for this is the
background detection. You can see on the right the image that was produced by
the background detection algorithm.

 While parts of the background in this are white, this is of no
consequence. What causes the most trouble is the way that parts of the test object
are dark. If any part of the object in any image is darker than 50% white, then it
will be removed from the computer's representation of the object. This has

Page 34 of 54

Left: Original Image overlaid with computer's model
Right: Computer's Foreground/Background differentiation

Textured 3D Model Reconstruction from Calibrated Images Evaluation

happened in several places on this object, including the aforementioned missing
ear.

Projection is also to blame for this problem. As the object rotates, if
the perspective assumed is too great or too small then the background 'eats' into
the representation of the object, because the size of features is either under or
over-estimated.

Currently background detection and projection use constant values
that need to be changed by hand to produce the best results – obviously some form
of automatic calibration from images would be very useful and would make a
good addition to the software. One would hope that once set up, none of these
settings would need to be changed. However, due to changes in ambient lighting
throughout the day, and the camera's auto white-balance compensation slight
changes are needed to produce the correct results.

In some cases the object may have a colour very similar to that of the
background, requiring more sensitive (and so more conservative) background
detection to be used. The best solution to this problem is to use a different colour
background though.

A much better version of the scan can be seen below. This was created
mostly by changing values to move the camera closer to the object and increase its
field of view. In places the computer's model is too large, but this could be
attributed to the background detection which in order to avoid classifying object as
background classifies large areas of background as object. Upon close inspection
it can be seen that the top of the turntable appears to be considered part of the
object too – this backs up the background detection argument.

The fact that part of the tail and ear are missing is probably down to
the Projection settings not being perfectly right again. It may also be that the
camera is not perfectly horizontal. Again, automatic calibration may be able to
detect these problems and remedy them.

Page 35 of 54

Computer model overlaid onto real image after modifications to
background detection and perspective

Textured 3D Model Reconstruction from Calibrated Images Evaluation

Testing on Different Models
I decided to use 4 Models to test out the reconstruction. One of these

was a toy cat, the other was a toy of a cartoon cow, with some very complex
shapes. There was also a shiny metal water spray can, and some china with a
reasonably complex pattern on it. The results are shown below, rendered by the
Java Viewer rather than OpenGL:

Page 36 of 54

Textured 3D Model Reconstruction from Calibrated Images Evaluation

These unfortunately all have a red tint, which is due to the red
background, reflected light, and the fact that with polygon reduction the reduced
model may be slightly bigger than the original (and will pick up background as
texture). The fact that the computer generated pawns don't appear to suffer as
badly hints that this is probably just the camera. This could easily be remedied by
shifting the hue of the texture slightly.

However it should be noted that for each one of these models, a few
minutes of fiddling with values had to be done to get the best result. While the
water spray has a small section of handle missing it shows a remarkable amount of
accuracy given the size of feature it was asked to extract (around 1.5mm by 4mm).
Shiny objects are usually considered the most difficult to reconstruct, but due to
the nature of the algorithm it has worked almost perfectly. Texturing has been of
the average of the reflections, which happen to be red.

As can be seen very clearly in the model of the jug, polygons at its top
are incorrectly textured. This is because the software was able to infer the
presence of a surface, but was not able to find an image from the camera in which
the colour of it could be viewed.

Page 37 of 54

Textured 3D Model Reconstruction from Calibrated Images Evaluation

The same artefacts occur in all objects. They are especially prominent
in models with big flat tops. One solution to this problem is to just make these
polygons transparent. Another solution is to make an algorithm that searches for
the nearest pixel in the texture that has a defined colour, and just use that.

Small coloured lines can also be seen in the models that are being
displayed. As the diagram below shows, if the actual texture coordinates are
rendered, pixels from outside the triangle's texture will be rendered in error.

The artefacts have been reduced by moving the texture coordinates for
the renderer inside the coordinates for the textured triangle. Unfortunately I moved
the coordinates in an acceptable amount for the 1024x1024 textures produced in
OpenGL. When these were resized to 512x512 for the Java viewer, the problem
became worse, and the coloured lines re-appeared. This could be fixed either by
moving the rendered coordinates in, or by using 1024x1024 textures for the Java
viewer.

Page 38 of 54

Texture coordinate misalignment
intended to reduce texture artefacts

Image showing texture holes in the top of
the model

Textured 3D Model Reconstruction from Calibrated Images Evaluation

Comparing Performance
As has been mentioned, it is hard to compare quantitatively the

performance and accuracy of my system with other systems available, because I
have very little information on other systems. It is obvious visually that the system
lacks the quality of the professional scanning systems.

However the level of detail obtained is still quite acceptable for some
uses, and considering the low cost of hardware compared with other systems it
may still be a viable proposition. With proper calibration and good background
detection the system may produce models of good enough quality to be used for
on-line shopping. As it is, there may still be uses for gamers and the growing
community amateur computer-generated film makers.

As for speed, I have only heard performance figures mentioned for the
Olympus ScanTop – a very similar product. This has been said to take around 2
hours per object depending on the detail settings used but does not mention detail
settings or computer specification.

However, compared to that, the average of 2 minutes computation
time on a 1Ghz laptop for this system would seem to be very encouraging. Using a
web cam and turntable the time for image acquisition could easily be reduced to
below 30 seconds.

Below is a table showing the time taken (in seconds) for each stage of
the reconstruction of the cat model for different volume sizes. This was produced
on a 1ghz Laptop.

Volume Size Loading,
Background
and Volume

Meshing Reduction Texturing Total

48 6 <0.5 <0.5 5 14
64 8 4 1 5 21
80 11 12 6 5 37
128 23 109 68 5 209

It can be seen that meshing scales very badly with volume size, and a
better data structure should probably be used (or the previously mentioned search
enhancement made). The slowdown is also partially due to excess noise in the test
set of images. With less noise, less useless polygons would be reduced and both
meshing and reduction would be far faster.

Results
The full results obtained from the software can obviously not be

shown here, however they are available to be viewed in full 3D on my website:
Page 39 of 54

Textured 3D Model Reconstruction from Calibrated Images Evaluation

http:// www.rabidhamster.org

Goals Achieved
I believe I have achieved my goals of creating a model reconstruction

system. I have managed to fulfil the tasks I set for myself in the requirements
analysis:
� Should run on a normal PC
� Should not require the PC to be modified in any way to interface hardware
� Will automatically take pictures of an object from known angles
� Will complete calculations in a useful amount of time. e.g. less than an hour
� The model produced should be an obvious likeness to the real-life model

Residual Bugs
There still appear to be two minor faults in the code:
Occasionally in polygon reduction one or two polygons will end up

completely removed, leaving a gap in the model. This only happens sometimes
with huge polygon reductions such as 20:1, and has proved very difficult to track
down due to the huge amounts of data around when the problem occurs.

It is possible that small errors creep into the data structures that
maintain the state of connection of the model. These may cause the polygon to
look unconnected and so to be wrongly removed. Inserting more checks into the
code to report any unconnected triangles may help to isolate this problem.

The second fault does not appear to effect operation, but it may cause
minor texturing artefacts. There appears to be a small error in one of the triangle
draw routines that occasionally makes it draw a small (slightly offset) line at the
end of a triangle. As can be seen on the picture on the left, small dashes are
wrongly added to the rendered image.

Page 40 of 54

Texturing artefacts (the short
horizontal lines)

Textured 3D Model Reconstruction from Calibrated Images Evaluation

This proves a slight mystery, because all 3 triangle draw routines
(Model Draw, Texture Generation, and Java Model Draw) are basically the same,
and yet only the Model Draw texture mapping routine appears to contain the bug.

Attempts to fix this have included restricting the range of lines that are
scanned to only those that are within the polygon's bounds. This appears to have
reduced the problem, as well as increasing rendering speed. However it has not
eliminated it and scrutiny of more pictures shows that problems don't always occur
at the edges of polygons.

Page 41 of 54

Textured 3D Model Reconstruction from Calibrated Images Conclusions

Conclusions

Summary of Findings
I believe that this project produced very good results given the quality

of the apparatus that was used, and the very low processing time needed to create
the 3D models. A few potential problems with this style of reconstruction were
encountered - such as the lack of texture on the top and bottom of objects.

Overall though, I believe this method has a lot of promise for
applications where accuracy is not needed. While the lack of concave surfaces
would appear to be a major problem, visual analysis of the test objects that have
been scanned shows that when a texture is added, artefacts become much harder to
detect. For simple objects, the lack of concave surfaces is quite acceptable (e.g.
the cat).

Hindsight
Taking into account the problems that have been encountered with

texturing (specifically the lack of texture in areas that the camera cannot see), I
think restricting the camera to a horizontal view of the turntable was a bad idea.
Facing 30 degrees downwards would have been far better, however this could be
potentially hard to set up.

Ideally the object could be placed on a test pattern, and the field of
view, distance and rotation of the camera could be automatically calculated from
images taken from any angle by hand. This not only allows the texture to be
reconstructed without gaps, but means that there is no longer any need for a
turntable, further reducing the cost of the system down to just that of the software
and a sheet of paper with the pattern on it.

Further improvements could place the object on a sheet of glass or a
very thin stand so images of the bottom could be taken too.

Further Work
After the creation of the software, a lot of time was spent changing the

various values I had available for background detection and perspective in order to
gain the most accurate result. Being able to automatically calibrate the background
using an image with no object on the turntable (or an area of image known to
always be background) could save a lot of time, and potentially match the
background much better, giving more accurate results. In addition taking an image
of a test object (perhaps a wireframe cube) on the turntable would allow the
software to calculate perspective itself.

Another small oversight in my design was the lack of a settings file to
save the settings. All settings were constants in a header file, because originally I
had envisaged that they would not require modifying. Ideally, this information

Page 42 of 54

Textured 3D Model Reconstruction from Calibrated Images Conclusions

would be stored alongside the images for a particular model. This is a reasonably
simple addition, and should have been specified as part of the project in the first
place.

As was mentioned in the last section, a pattern that allows the camera's
position to be calculated from the source image would solve a lot of problems.
These is nothing in the software that means the camera must work horizontally, so
at the expense of some speed all existing algorithms could easily be adapted.
There already appears to be some software that works on a similar principle.

As has been mentioned previously, there are sometimes faint lines at
the edge of triangles. This could be reduced greatly by using a more intelligent
algorithm to place triangles on a texture. This would place them according to their
neighbours on the 3D object, so colours at their borders would match.

Page 43 of 54

Textured 3D Model Reconstruction from Calibrated Images Bibliography

Bibliography
Virtually all research for this project was done on the Internet, due to

the large amount of on-line publications in this area by companies, research
groups and individuals.

[1] RSI GmbH, PhotoModeller
http://www.rsi.gmbh.de/photomodeler_e.htm

[2] Peter Toft, The Radon Transform
http://eivind.imm.dtu.dk/staff/ptoft/Radon/Radon.html

[3] Olympus, ScanTop Brochure http://www.flexist.de/pdf/h28z288.pdf

[4] Miguel Sainz, Renato Pajarola, Antonio Susin, Photorealistic Image Based
Objects from Uncalibrated Images
http://www.ics.uci.edu/~msainz/publications/vis03.pdf

[5] Yasemin Kuzu, Photorealistic Object Reconstruction Using Colour Image
Matching http://www.fpk.tu-
berlin.de/~kuzu/Pub/isprs2002_voxel.pdf

[6] Alexander Stevenson, Voxels and Volumetric Representation
http://www3.telus.net/ah/voxels/voxels.htm

[7] H. Gouraud, Continuous Shading of Curved Surfaces

[8] Paul Bourke, Polygonising a Scalar Field Using Tetrahedrons
http://astronomy.swin.edu.au/~pbourke/modelling/polytetra/

[9] Paul Bourke, Polygonising a scalar field
http://astronomy.swin.edu.au/~pbourke/modelling/polygonise/

[10] W.E. Lorensen, H.E. Cline, Marching Cubes: a high resolution 3D surface
reconstruction algorithm

[11] Dr Neil Dodgson, CST II - Advanced Graphics 2003-04
http://www.cl.cam.ac.uk/Teaching/2003/AdvGraph/

[12] Stan Melax, A Simple, Fast, and Effective Polygon Reduction Algorithm

[13] Dr Peter Robinson, Computer Graphics and Image Processing
http://www.cl.cam.ac.uk/Teaching/2003/Graphics/

[14] Eugene Crosser, PhotoPC

[15] PovRay.Org, POV-Ray Website http://www.povray.org

Page 44 of 54

Textured 3D Model Reconstruction from Calibrated Images Bibliography

[16] Miguel Sainz, Renato Pajarola, Antonio Susin‡, Photorealistic Image Based
Objects from Uncalibrated Images
http://www.ics.uci.edu/~msainz/publications/vis03.pdf

[17] John Carmack, MD2 File Format http://www.idsoftware.com

Page 45 of 54

Textured 3D Model Reconstruction from Calibrated Images Appendices

Appendices
JMOD Model File Format
Sections

The JMOD file consists of 3 blocks, which come one after the other
in the file:

Header
Vertices

Triangles
The following data types are used:

uint32 unsigned 32-bit integer
uint16 unsigned 16-bit integer
int16 signed 16-bit integer

Header
Offset
(Hex)

Type Description

0x00 uint32 Magic number = 'JMOD'
Ensures this is the correct file

0x04 uint16 Vertex Count (VCOUNT)
0x06 uint16 Triangle Count (TCOUNT)

Vertices
This block consists of VCOUNT copies of the structure below:
Offset
(Hex)

Type Description

0x00 int16 (X*32767) (-1<=val<1)
0x02 int16 (Y*32767) (-1<=val<1)
0x04 int16 (Z*32767) (-1<=val<1)

Triangles
This block consists of TCOUNT copies of the structure below:
Offset
(Hex)

Type Description

0x00 uint16 Index of 1st vertex in previous block

Page 46 of 54

Textured 3D Model Reconstruction from Calibrated Images Appendices

Offset
(Hex)

Type Description

0x02 uint16 Index of 2nd vertex in previous block
0x04 uint16 Index of 3rd vertex in previous block
0x06 uint16 1st Vertex X Texture Coordinate (tx*65536)
0x08 uint16 1st Vertex Y Texture Coordinate (ty*65536)
0x0A uint16 2nd Vertex X Texture Coordinate (tx*65536)
0x0C uint16 2nd Vertex Y Texture Coordinate (ty*65536)
0x0E uint16 3rd Vertex X Texture Coordinate (tx*65536)
0x10 uint16 3rd Vertex Y Texture Coordinate (ty*65536)

Page 47 of 54

Textured 3D Model Reconstruction from Calibrated Images

POV-Ray Pawns
// Modified Persistence Of Vision raytracer version 3.5 sample file.
// --------------- Original file
// "Pawns", a study in wood... three pawns on a chessboard
// File by Douglas Otwell
// -----------------------------
// Modified by Gordon Williams to remove chessboard
// and put Pawns closer together

global_settings { assumed_gamma 1.8 }

#include "colors.inc"
#include "shapes.inc"
#include "textures.inc"

//
// Yellow pine, close grained
//
#declare Yellow_Pine = texture {
 pigment {
 wood
 turbulence 0.02
 color_map {
 [0.000, 0.222 color red 0.808 green 0.671 blue 0.251 filter
0.000
 color red 0.808 green 0.671 blue 0.251 filter 0.000]
 [0.222, 0.342 color red 0.808 green 0.671 blue 0.251 filter
0.000
 color red 0.600 green 0.349 blue 0.043 filter 0.000]
 [0.342, 0.393 color red 0.600 green 0.349 blue 0.043 filter
0.000
 color red 0.808 green 0.671 blue 0.251 filter 0.000]
 [0.393, 0.709 color red 0.808 green 0.671 blue 0.251 filter
0.000
 color red 0.808 green 0.671 blue 0.251 filter 0.000]
 [0.709, 0.821 color red 0.808 green 0.671 blue 0.251 filter
0.000
 color red 0.533 green 0.298 blue 0.027 filter 0.000]
 [0.821, 1 color red 0.533 green 0.298 blue 0.027 filter
0.000
 color red 0.808 green 0.671 blue 0.251 filter 0.000]
 }

scale 0.1
 translate 10*x
 }
}

// Yellow_Pine layer 2
texture {
 pigment {
 wood
 turbulence 0.01
 color_map {
 [0.000, 0.120 color red 1.000 green 1.000 blue 1.000 filter
1.000
 color red 0.702 green 0.412 blue 0.118 filter 0.608]
 [0.120, 0.231 color red 0.702 green 0.412 blue 0.118 filter
0.608
 color red 0.702 green 0.467 blue 0.118 filter 0.608]
 [0.231, 0.496 color red 0.702 green 0.467 blue 0.118 filter
0.608
 color red 1.000 green 1.000 blue 1.000 filter 1.000]
 [0.496, 0.701 color red 1.000 green 1.000 blue 1.000 filter
1.000
 color red 1.000 green 1.000 blue 1.000 filter 1.000]
 [0.701, 0.829 color red 1.000 green 1.000 blue 1.000 filter
1.000
 color red 0.702 green 0.467 blue 0.118 filter 0.608]
 [0.829, 1 color red 0.702 green 0.467 blue 0.118 filter
0.608
 color red 1.000 green 1.000 blue 1.000 filter 1.000]
 }

scale 0.5
 translate 10*x
 }
}

//
// Rosewood
//
#declare Rosewood = texture {
 pigment {
 bozo
 turbulence 0.04
 color_map {
 [0.000, 0.256 color red 0.204 green 0.110 blue 0.078 filter
0.000
 color red 0.231 green 0.125 blue 0.090 filter 0.000]
 [0.256, 0.393 color red 0.231 green 0.125 blue 0.090 filter
0.000
 color red 0.247 green 0.133 blue 0.090 filter 0.000]
 [0.393, 0.581 color red 0.247 green 0.133 blue 0.090 filter
0.000
 color red 0.204 green 0.110 blue 0.075 filter 0.000]
 [0.581, 0.726 color red 0.204 green 0.110 blue 0.075 filter
0.000

 color red 0.259 green 0.122 blue 0.102 filter 0.000]
 [0.726, 0.983 color red 0.259 green 0.122 blue 0.102 filter
0.000
 color red 0.231 green 0.125 blue 0.086 filter 0.000]
 [0.983, 1 color red 0.231 green 0.125 blue 0.086 filter
0.000
 color red 0.204 green 0.110 blue 0.078 filter 0.000]
 }

scale <0.5, 0.5, 1>
 translate 10*x
 }

finish {
 ambient 0.5
 diffuse 0.8
 }
}

// Rosewood layer 2
texture {
 pigment {
 wood
 turbulence 0.04
 color_map {
 [0.000, 0.139 color red 0.545 green 0.349 blue 0.247 filter
1.000
 color red 0.000 green 0.000 blue 0.000 filter 0.004]
 [0.139, 0.148 color red 0.000 green 0.000 blue 0.000 filter
0.004
 color red 0.000 green 0.000 blue 0.000 filter 0.004]
 [0.148, 0.287 color red 0.000 green 0.000 blue 0.000 filter
0.004
 color red 0.545 green 0.349 blue 0.247 filter 1.000]
 [0.287, 0.443 color red 0.545 green 0.349 blue 0.247 filter
1.000
 color red 0.545 green 0.349 blue 0.247 filter 1.000]
 [0.443, 0.626 color red 0.545 green 0.349 blue 0.247 filter
1.000
 color red 0.000 green 0.000 blue 0.000 filter 0.004]
 [0.626, 0.635 color red 0.000 green 0.000 blue 0.000 filter
0.004
 color red 0.000 green 0.000 blue 0.000 filter 0.004]
 [0.635, 0.843 color red 0.000 green 0.000 blue 0.000 filter
0.004
 color red 0.545 green 0.349 blue 0.247 filter 1.000]
 [0.843, 1 color red 0.545 green 0.349 blue 0.247 filter
1.000
 color red 0.545 green 0.349 blue 0.247 filter 1.000]
 }

scale <0.5, 0.5, 1>
 translate <10, 0, 0>
 }

finish {
 ambient 0.5
 diffuse 0.8
 }
}

//
// Camera ...
//
camera {
 location <8*sin(clock*3.14159*2.0), 1, 8*cos(clock*3.14159*2.0)>
 direction <0, 0, 1.5>
 angle 60
 up <0, 1, 0>
 right <4/3, 0, 0>
 look_at <0, 1, 0>
}

light_source { <100.0, 400.0, -600.0> color White }

// a back-light to create a highlight on the board
light_source { <12.0, 4.0, 12.0> color White }

//
// Pawn
//
#declare pawn = union {
 difference {
 object { Disk_Y scale <8, 12.7468, 8> }
 quartic {
 < 1.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 2.0, 0.0,-738.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 1.0, 0.0, 0.0, 2.0, 0.0, 162.0, 0.0, 0.0, 0.0, 0.0,
 1.0, 0.0, -738.0, 0.0, 6561.0>
 sturm
 }

}

quartic {
 < 1.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 2.0, 0.0, -132.5,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 1.0, 0.0, 0.0, 2.0, 0.0, 123.5, 0.0, 0.0, 0.0, 0.0,
 1.0, 0.0, -132.5, 0.0, 3813.0625 >
 sturm

Page 48 of 54

Textured 3D Model Reconstruction from Calibrated Images
 translate -11.2468*y
 }

quartic {
 < 1.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 2.0, 0.0, -132.5,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 1.0, 0.0, 0.0, 2.0, 0.0, 123.5, 0.0, 0.0, 0.0, 0.0,
 1.0, 0.0, -132.5, 0.0, 3813.0625>
 sturm
 translate 11.2468*y
 }

// Base
 intersection {
 object { Disk_Y
 scale <12, 3, 12>
 translate -15.7468*y
 }

object { QCone_Y
 translate -2*y
 }

}

// Ball on top
 sphere { <0, 17.7468, 0>, 7 }

 bounded_by { object { Disk_Y scale <14, 26, 14> } }

 translate 18.7468*y
 scale 0.06
}

// Now let's put the pieces together

// Pawn 1
object { pawn
 texture {
 Yellow_Pine
 finish { phong 0.8 }
 }

rotate 60*y
 translate <-1, 0, 1>
}

// Pawn 2
object { pawn
 texture {
 Yellow_Pine
 finish { phong 0.8 }
 }

rotate 30*y
 translate <1, 0, -1>
}

// Pawn 3
object { pawn
 texture {
 Rosewood

 finish {
 phong 1.0
 ambient 0.5
 diffuse 0.7
 }

}

rotate 30*y
 translate <0.72, -0.24, 0>
 rotate 96.2052*z
 translate <0, 0, 0>
}

// a background glow to add interest
sphere { <0, 0, 0>, 1000
 inverse
 hollow on

 pigment {
 gradient y
 color_map {
 [0.25 0.46 color Red color Red]
 [0.46 1.001 color Red color Red]
 }

scale 2000
 translate -1000*y
 }
}

Page 49 of 54

Textured 3D Model Reconstruction from Calibrated Images Project Proposal

Project Proposal
Gordon Williams
Downing College

GW235

CST Part II Project Proposal

Textured 3D Model Reconstruction from a series of Calibrated
Images

20th October 2003

Project Originator : Gordon Williams

Project Supervisor : James Srinivasan

Signature : ..

Director of Studies : Richard Stibbs

Signature : ..

Overseers : Gavin Bierman and Steven Hand

Page 50 of 54

Textured 3D Model Reconstruction from Calibrated Images Project Proposal

Introduction
The aim of this project is to develop a system to produce a likeness of

a physical object that may be viewed from a website. It will involve using a digital
camera to take pictures of an object from known positions, and then applying
computer vision techniques to construct a three-dimensional representation of that
object inside the computer. This will then be textured with the captured pictures to
add realism and hide imperfections in the reconstructed model. The model will be
saved, and a Java applet will be made that allows it to be viewed from a web
browser at arbitrary angles.

Work to be undertaken
The project will consist of the following main parts:

� Finding an automated means taking a series of images of an object from known
positions

� Producing a polygon mesh from the series of images
� Projecting images onto the mesh to produce a textured model
� Saving the mesh and texture in a compact form
� Producing a Java applet to view the mesh and texture from a web browser

Starting Point
At the start of the project, I will have a digital camera, and a method of

taking images from known positions. I have attempted a similar project before,
and i have some knowledge of the algorithms required and problems that may be
encountered. The project will not use source code that was previously written,
although it will make use of libraries such as OpenIL and OpenGL. It will also
require the use of third-party software to control the digital camera.

I have done some research into the subject (although more remains to
be done). Some research papers i have that i currently think are of merit are:

� Polygonising a scalar field - Paul Bourke
� Polygon Reduction (Game Developer Magazine Nov 98) - Stan Melax
� 3D human body model acquisition from multiple views- I.I. Kakadiaris, D.

Metaxas
� Roxels: Responsibility Weighted 3D Volume Reconstruction - Jeremy De

Bonet, Paul Viola
� Efficient Volumetric Reconstruction from Multiple Calibrated Cameras -

Manish Jethwa
� On Combining Shape from Silhouette and Shape from Structured Light - Srdan

Tosovic, Robert Sablatnig, Martin Kampel
� Fast Volume Carving - Soon Hyoung Pyo

Structure of Project
The first part of the project involves automatically taking a series of

pictures of an object from known positions. The ideal way of doing this seems to
be to use a camera mounted on a robot arm that can move around the object. I
already have a robot arm capable of doing this which I plan to use, however if this
proves to be infeasible I will mount the object on a rotating platform and keep the
camera stationary.

Page 51 of 54

Textured 3D Model Reconstruction from Calibrated Images Project Proposal

Once the pictures have been gathered, a series of algorithms will be
used to create a 3-dimensional volume representing the object, which will then be
converted to a mesh of polygons. As an extension, this will then be reduced to a
lower-detail mesh.

To make the mesh look more realistic, a texture will be applied to it,
which will be derived from the pictures of the object. The final part of the project
will consist of making a Java applet for a website capable of viewing the textured
model from any angle the user chooses.

The Image processing code will have to be written in C++ since there
will be a very large amount of data being processed, and the overhead Java places
on structures would make most structures exceed the amount of RAM on most
desktop computers. The robot arm controller contains a PIC Microcontroller
which needs programming, and this will be best done in PIC Assembler due to the
limited resources of the PIC. The web-browser based viewer will be written in
Java because at the moment it is the most compatible method of embedding user-
defined code in web browsers.

Success Criteria
The project will be judged to be a success when:
� Pictures of a test object (left) can be taken automatically

from known viewpoints.
� A series of these pictures can be used to construct a

textured polygon mesh which is a likeness of the test
object.

� This likeness may be viewed at different angles via a
website.

Resources Required
For the project I will require the following items, all of them have

already been acquired and there are no issues about availability.
PC Since external hardware will need to be connected to a

computer to retrieve the sequence of pictures it is not
feasible to use a PWF machine where i would not have
sufficient access privileges. I propose to use my computer
which I have full control of.

Digital Camera This will be needed to take pictures of the object. The
camera model i plan to use can be told to take pictures via a
serial link.

Robot Arm This is a 3-jointed robot arm that may only move in one
plane. The camera will be mounted on it, and images will be
taken without altering the illumination on the subject.

PIC Development
Kit

The robot arm is controlled by a controller board containing
a PIC Microprocessor. This needs to be programmed to
control the arm.

Backup Resources
In the event that something fails, i have the several strategies. The

Page 52 of 54

Textured 3D Model Reconstruction from Calibrated Images Project Proposal

work on the PC will be backed up to Pelican at the end of each day, and every
week will be written onto a CD. If there is a hardware failure I can obtain another
PC within a week, and can write my dissertation and software on the PWF in the
mean time.

The main camera I plan to use is an Olympus 990Z, but if this fails i
have an Olympus C2020Z, which will be a drop-in replacement. If the Robot Arm
fails, i have a turntable which can be used instead. If the PIC development kit
fails, i also have a spare.

Plan of Work
Work will be divided into 2-week slices, starting from the Monday

after the proposal is submitted. Vacations will be used to complete any milestones
in the event they were not reached in the given timespan, and the last Vacation
will be used to write part of the dissertation in.

Since this project relies mostly on algorithms, and doesn't require vast
amounts of coding, i am confident that the code can be written in the relatively
short timespan i have given myself to write it. However, parts of the project that
are non-essential to the finishing criteria (such as a User Interface and polygon
reduction) have been marked 'extension' and may be omitted if i run out of time.

The work to be done in the last few weeks of the timetable has been
left intentionally low to leave time to correct problems, and to allow me extra time
for other activities not related to this project.

Week Work to be Undertaken Milestones
27 Oct –
9 Nov

� Research into methods of 3D reconstruction and
other techniques of use

� Assuring the robot arm works correctly (in the
event it doesn't a turntable will be used)

� Installing and setting up necessary development
tools

� Papers of use
� Working means of getting

pictures
� All software needed

installed

10 Nov
– 23
Nov

� Code for PIC controller on Arm
� Producing a set of test images via a ray tracer

� Working Arm (or
turntable) Controller

� Set of test images
24 Nov
– 7 Dec

� PC-end code to control Robot Arm (or turntable)
and Digital Camera

� Work on polygon model data structure, 3D
recognition, and polygonization

� Java code to read polygon model

� a method of taking pictures
of the test object from
known positions

Vacation
12 Jan –
25 Jan

� Finish model reconstruction and polygonization
� Work on texturing code
� Java viewer that will display the model

� Code to create a 3D model
from 2D images

� Java viewer for standard
model (without texture)

26 Jan –
8 Feb

� Progress Report
� Polygon reduction code (extension)
� Java viewer to view model with texture

� finished Java Viewer
� finished Converter

9 Feb –
22 Feb

� User Interface (extension)
� Test reconstruction of different Models

� Graphical user interface to
command-line tools
(extension)

Page 53 of 54

Textured 3D Model Reconstruction from Calibrated Images Project Proposal

Week Work to be Undertaken Milestones
23 Feb –
7 Mar

� Testing of Viewer
� Dissertation Writeup

� Dissertation 'introduction'
and 'preparation' sections

Vacation � Dissertation Writeup � Dissertation
'implementation',
'evaluation', and
'conclusions' section

19 Apr –
2 May

� Dissertation ToC, Index, etc.
� Proof-reading

� Finished, printed
dissertation

3 May –
14 May
(Deadlin
e)

� Tidying up of files, code, and finishing off
� Proof-reading of Dissertation by others

� Final print of dissertation
and binding

Page 54 of 54

